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Abstract
In this paper, we investigate the influence of entanglement and decoherence on
the quantum Stackelberg duopoly (QSD) game. It is shown that the first-mover
advantage can be weakened or enhanced due to the existence of entanglement
for the QSD game without decoherence. The influence of decoherence induced
by the amplitude damping and the phase damping are explicitly studied in the
formalism of Kraus operator representations. We show that the amplitude
damping drastically changes the Nash equilibrium of the QSD game and the
profits of the two players while the phase damping does not affect the Nash
equilibrium and the profits of the two players. It is found that under certain
conditions there exists a ‘critical point’ of the damping parameter for the
amplitude damping environment. At the ‘critical point’ the two players have
the same moves and payoffs. The QSD game can change from the first-mover
advantage game into the follower-mover advantage game when the damping
parameter varies from the left-hand-side regime of the ‘critical point’ to the
right-hand-side regime.

PACS numbers: 03.67.Lx, 03.67.−a, 02.50.Le, 87.23.Ge

1. Introduction

In the past few years, there has been a great deal of effort made to extend the classical game
theory into the quantum domain since it is believed that the quantum game theory may be
applicable to the study of effective quantum communication as well as for the production of new
algorithms for quantum computers. Furthermore, various proposals of applying quantum-like
models in social sciences and economics have been put forward [1–7]. In economics, duopoly
is a market dominated by two firms large enough to influence the market price. Stackelberg
presented a dynamic form of duopoly which is also called the ‘leader-follower’ model. The
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Stackelberg duopoly game [8–12] is a dynamic extension of the static Cournot duopoly game.
Unlike the Cournot duopoly in which both firms make their strategic moves at the same time
and thus have to guess what the action of their opponents would be, the Stackelberg duopoly
allows one of the firms, say firm A, to move first. Since the other firm, say firm B, can
now observe its opponent’s move before making its own decision, the game can no longer be
modelled as static. In such a dynamic game there exists an interesting result: there is a clear
advantage to moving first. This first-mover advantage in the Stackelberg duopoly is due to
the fact that being able to make its strategic decision known, firm A does not need to guess
what firm B will do because firm B is assumed to behave optimally. Accordingly, firm A
can precisely predict firm B’s strategic decision and choose its own move in such a way that
maximizes its own profits given firm B’s choice. This informational advantage is the main
driving force behind the first-mover advantage. Recently, the Stackelberg duopoly game has
been extended to quantum versions in terms of ‘minimal’ quantization rules proposed in [13]
and the classical-probability action formalism on the initial strategy state [14] for both discrete
and continuous variables [15–17]. It has been shown that quantum entanglement affects the
first-mover advantage in the classical form. Under certain conditions, the classical situation
of the first mover becoming better off and the follower becoming worse off is then avoided in
the quantum Stackelberg duopoly (QSD).

As is well known, no system can be completely isolated from its environment. This
unwanted system–environment interaction induces entanglement between the quantum system
and the environment such that quantum coherence of the system is destroyed and quantum
decoherence [18–21] occurs, which results in an inevitable noise in the quantum computation
and information processing. Quantum systems are generally very fragile to decoherence which
can suppress various nonclassical effects of quantum systems [22–27]. For both players in
the QSD game, neither firm A nor firm B can avoid the influence of decoherence induced by
their environment. Thus, it is important to analyse effects of quantum decoherence in real
practical situations to find out if firm A can continue to maintain its the first-mover advantage
in the classical form in a noisy environment. The motivation of this paper is to investigate
quantum decoherence how to affect the QSD game in a damping environment and to explore
new phenomenon induced by quantum decoherence in the QSD game.

In practice, it is a complicated problem to understand the environment effect on the
quantum system. In general, there are three ideal models of noise to describe the environment
effect [28], called the amplitude damping, phase damping and the depolarizing channel,
respectively. In the present paper, our attention focuses on the amplitude and phase damping
since they can capture many of the most important features of the environment noise occurring
in quantum-mechanical systems. In order to understand the physical origin of the amplitude
and phase damping, let us briefly recall a few basic facts about the interaction between a
quantum system and its environment. On one hand, one of the most important reasons for
the quantum state change is the energy dissipation of the system induced by the environment.
This energy dissipation can be characterized by the amplitude damping model. On the
other hand, a state can be a superposition of different states, which is one of the main
characteristics of the quantum mechanics. The relative phase and amplitude of the superposed
state determines the properties of the whole state. If the relative phases of the superposed
states randomly change with the time evolution, then the coherence of the quantum state
will be destroyed. This kind of quantum noise process is called the phase damping. In this
case, the energy eigenstates of a quantum system do not change as a function of time, but
do accumulate a phase which is proportional to the eigenvalue. When the system evolves for
an amount of time, partial information about the relative phases between energy eigenstates
is lost.
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The amplitude and phase damping can be mathematically described by decaying of the
diagonal and off-diagonal elements of the reduced density operator of the system. The
two effects can be understood in terms of Hamiltonian formalism. If we assume the total
Hamiltonian of the system plus environment to be HT = HS + HR + HI , where HS and
HR are Hamiltonians of the system and environment, respectively, and HI is the interaction
Hamiltonian between them. When the Hamiltonian of the system commutes with that of
the interaction between the system and environment, i.e., [HS,HI ] = 0, which means that
there is no energy transfer between the system and the environment, energy of the system is
conservative, so that what interaction between the system and environment describes is the
phase damping effect. When [HS,HI ] �= 0, there is energy transfer between the system and
environment, so that what interaction between the system and environment describes is the
amplitude damping effect.

The amplitude and phase damping models have been widely applied to study the influence
of the noisy environment on the two-person zero-sum game [29, 30] and the quantum prisoner
dilemma [31–35] in terms of the Kraus operator formalism [28, 36, 37]. The purpose of this
paper is to study the influence of decoherence induced by the amplitude damping and the phase
damping on the QSD game using Kraus operator representation of decoherence [38]. This
paper is organized as follows. In section 2, we briefly review the QSD game and investigate
the influence of quantum entanglement. In section 3, we analyse the effects of the QSD game
under decoherence. We shall conclude our paper with discussions and remarks in the last
section.

2. QSD game with entanglement

We consider the QSD game in the classical-probability action formalism with discrete variables
[15]. In this formalism, the two players can manipulate the initial strategy state through
probabilistically applying two unitary operations. The QSD game can be modelled by two
qubits, one for each player of firms A and B who have two possible strategies: identity operator
(Î ) and the inversion operator (Ĉ). Both Î and Ĉ are unitary operators. Assume that each qubit
has the basis |0〉 and |1〉; then the identity operation Î preserves consistency in the bases while
action of the inversion strategic operation flips the bases, i.e., Ĉ|0〉 = |1〉 and Ĉ|1〉 = |0〉.

Suppose that the QSD game starts with the initial state denoted by a density matrix ρi .
When two players apply the unitary operators Î and Ĉ with probabilities x and 1 − x for the
first player, y and 1 − y for the second player on the two-qubit state, respectively, the initial
state ρi changes to

ρf = xyIA ⊗ IBρiI
†
A ⊗ I

†
B + x(1 − y)IA ⊗ CBρiI

†
A ⊗ C

†
B

+ y(1 − x)CA ⊗ IBρiC
†
A ⊗ I

†
B + (1 − x)(1 − y)CA ⊗ CBρiC

†
A ⊗ C

†
B. (1)

Assume that in Stackelberg duopoly players’ moves are given by probabilities lying in the
range (0, 1]. The moves by firms A and B in a classical duopoly game are given by quantities
q1 and q2 with q1 and q2, respectively, being in the range [0,∞). We assume that firms A and
B agree on a function that can uniquely define a real positive number in the range (0, 1] for
every quantity q1 and q2. A simple such function is 1/(1 + qi), so that firms A and B find the
probabilities x and y to be given by

x = (1 + q1)
−1, y = (1 + q2)

−1. (2)

The payoffs of the two players in the QSD game are obtained through mean values of
their corresponding payoff operators with respect to the final state of the game. The payoff



7732 X Zhu and L-M Kuang

operators of firms A and B can be defined in terms of the projective operators in the two-qubit
Hilbert space as

P̂A(q1, q2) = q1

q12
[k|00〉〈00| − |10〉〈10| − |01〉〈01|],

(3)
P̂B(q1, q2) = q2

q12
[k|00〉〈00| − |10〉〈10| − |01〉〈01|],

where we have introduced the following parameter:

q12 = [(1 + q1)(1 + q2)]
−1. (4)

Then, the payoffs of firms A and B are given by the following trace operations:

PA(q1, q2) = Tr[ρf P̂A(q1, q2)], PB(q1, q2) = Tr[ρf P̂B(q1, q2)]. (5)

In the QSD game, firm A is a leader and firm B is a follower. Firm A moves first and
firm B moves second. The sequence of events is following. (1) Firm A chooses a quantity
q1 > 0. (2) Firm B observes q1 and then chooses a quantity q2 � 0. (3) Firms A and B apply
the operators Î and Ĉ such that firms A and B apply Î with probabilities x and y, respectively.
(4) The payoffs to firms A and B are given by equation (5).

We now find the backward-induction outcome in the QSD game. We do it in exactly the
same way as is done in the classical game. We consider the situation in which the initial state
of the QSD game is a pure state given by

|ψ〉 = cos θ |00〉 + sin θ |11〉, (6)

which leads to the following initial density matrix

ρi = cos2 θ |00〉〈00| + cos θ sin θ |00〉〈11| + cos θ sin θ |11〉〈00| + sin2 θ |11〉〈11|. (7)

Substituting equations (6) and (2) into equation (1), one can obtain the final state of the
QSD game given by the following density matrix

ρf = ρ11|00〉〈00| + ρ14|00〉〈11| + ρ22|01〉〈01| + ρ23|01〉〈10|
+ ρ32|10〉〈01| + ρ33|10〉〈10| + ρ41|11〉〈00| + ρ44|11〉〈11|, (8)

where the matrix elements of the density operator are given by

ρ11 = q12(cos2 θ + q1q2 sin2 θ), ρ22 = q12(q2 cos2 θ + q1 sin2 θ),

ρ33 = q12(q1 cos2 θ + q2 sin2 θ), ρ44 = q12(q1q2 cos2 θ + sin2 θ),

ρ14 = ρ41 = q12(1 + q1q2) cos θ sin θ, ρ23 = ρ32 = q12(q1 + q2) cos θ sin θ.

(9)

The payoffs to firms A and B can be calculated by using equations (3), (5) and (8) with
the following expressions:

PA(q1, q2) = 1
2q1[k(1 + q1q2) − 2(q1 + q2) + k(1 − q1q2) cos 2θ ],

(10)
PB(q1, q2) = 1

2q2[k(1 + q1q2) − 2(q1 + q2) + k(1 − q1q2) cos 2θ ],

which are exactly in the same as the payoffs to firms A and B in the classical Stackelberg
model of duopoly [15] when entanglement vanishes i.e., θ = 0.

The backward-induction outcome of the QSD game is found by first finding firm B’s
reaction to an arbitrary quantity by firm A. Denoting this quantity as R2(q1) we find

R2(q1) = maxPA(q1, q2)

= k − 2q1 + k cos 2θ

4 − 2kq1 + 2kq1 cos 2θ
. (11)
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Figure 1. The moves of firms A and B at the subgame perfect Nash equilibrium point for the
QSD game without decoherence, q∗

1 (the dash line ) and q∗
2 (the solid line ), as functions of the

entanglement angle θ when the QSD game is initially in the state given by equation (6) and k = 1.

After firm B chooses this quantity R2(q1), firm A then finds its optimization problem as

maxPA(q1, R2(q1)) = 1
4max[q1(k − 2q1 + k cos 2θ)], (12)

which leads to the backward-induction outcome of the QSD game with the initial state given
by equation (6)

q∗
1 = 1

2
k cos2 θ, q∗

2 = 4k cos2 θ

16 − k2(1 − cos 4θ)
, (13)

which is the subgame perfect Nash equilibrium point [12] for the QSD game. Equation (13)
indicates that there exists an equilibrium point when k2(1 − cos 4θ) < 16 which implies
q∗

1 > 0 and q∗
2 > 0. At this equilibrium point, using equation (10) we can find payoffs to

firms A and B to be given by

PA(q∗
1 , q∗

2 ) = 1

8
k2 cos4 θ, PB(q∗

1 , q∗
2 ) = k2 cos4 θ

16 − k2(1 − cos 4θ)
. (14)

From equations (13) and (14), we can see that the existence of quantum entanglement for
the initial state of the QSD game affects the equilibrium points of the game and the payoffs
to the two players. When the QSD game is initially in an unentangled state |00〉, i.e., θ = 0,
we find the equilibrium point given by q∗

1 = 2q∗
2 = k/2, and payoffs to firms A and B to

be PA(q∗
1 , q∗

2 ) = 2PB(q∗
1 , q∗

2 ) = k2/8. These results are exactly the same as those in the
classical SD game [8, 15]. When the initial state of the game is |11〉, i.e., θ = π/2, we have
q∗

1 = q∗
2 = 0 which implies that there does not exist the subgame perfect Nash equilibrium.

In order to see the influence of entanglement on the subgame perfect Nash equilibrium and
payoffs, we plot the equilibrium point and corresponding profits to the two players with
respect to the entanglement angle θ in figures 1 and 2, respectively. From figures 1 and 2,
we can see that in the regime of 0 < θ < π/2 the first-mover advantage is weakened with
the increase of the entanglement angle θ , so that entanglement suppresses the first-mover
advantage. The follower firm becomes better off and the leader firm becomes worse off. In
this regime, entanglement can potentially be a particularly useful element for the ‘follower in
the leader–follower model. However, the QSD game will show completely different properties
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Figure 2. Payoffs to firms A and B at the subgame perfect Nash equilibrium point for the QSD
game without decoherence, PA(q∗

1 , q∗
2 ) (the dash line ) and PB(q∗

1 , q∗
2 ) (the solid line ), as functions

of the entanglement angle θ when the QSD game is initially in the state given by equation (6) and
k = 1.

in the entanglement regime of π/2 < θ < π . In fact, from figures 1 and 2 we can see that in
the regime of π/2 < θ < π quantum entanglement enhances the first-mover advantage with
increase of θ , the leader firm becomes better off and the follower firm becomes worse off, so
that entanglement can potentially be a particularly useful element for the ‘leader’.

3. QSD game in the noisy environment

In this section, we study the influence of the decoherence on the QSD game. We shall
calculate explicitly the subgame perfect Nash equilibrium points of the QSD game in the
noisy environment and payoffs to firms A and B at these equilibrium points for the situations
of the amplitude damping channel and the phase damping channel, respectively. As is well
known, the evolution of quantum states in the noisy environment can be well described in
terms of Kraus operators [28, 36, 37]. The quantum system of the initial state ρi evolves to
the final state ρf under the action of the noisy environment. One can relate the initial state
and the final state through using a superoperator ρf = S(ρi) in which the quantum operation
S on the state ρin can be described by the Kraus operator sum formalism [1, 2] as

ρout =
∑

µ

Mµ(p)ρiM
†
µ(p), (15)

where p is a parameter to describe the damping produced by the noise environment and it takes
its values in the regime of (0, 1). We have p = 0 in the absence of the damping while we
have p = 1 the evolution time approaches the infinity. The two-bit Kraus operators Mµ(p)

and M†
µ(p) act on the Hilbert space of the quantum system under consideration, they can be

expressed in terms of single-qubit Kraus operators defined below and satisfy the completeness
relation

∑
µ M†

µ(p)Mµ(p) = 1.
In general, the explicit expressions for the Kraus operators depend on the type of the noisy

environment. In what follows we shall consider two kinds of the typical noisy environment,
i.e., the amplitude damping and the phase damping. For the single-qubit case, one can use
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two Kraus operators to describe the amplitude damping. The two Kraus operators are given
by

m0(p) =
(

1 0
0

√
1 − p

)
, m1(p) =

(
0

√
p

0 0

)
. (16)

However, in order to describe the phase damping, we have to need three Kraus operators given
by

m0(p) =
√

1 − p

(
1 0
0 1

)
, m1(p) = √

p

(
1 0
0 0

)
, m2(p) = √

p

(
0 0
0 1

)
.

(17)

The QSD game between two players proceeds as described in the previous section.
However, the two players can now delay their decision to apply the unitary operations Î and Ĉ

and allow the game to evolve nonunitarily under the noise environment from the initial state
of the game ρi to the state ρ ′

i which acts as the new initial state of the QSD GAME given by

ρ ′
i =

∑
Mµ(p1)ρiM

†
µ(p1), (18)

where we have introduced the following two-qubit Kraus operator

Mµ(p1) = mr(p1) ⊗ ms(p1), (19)

where mr(p1) are single qubit Kraus operators given by equations (16) and (17) for the
amplitude damping and the phase damping, respectively.

After the two players apply the unitary operators Î and Ĉ with probabilities x and y on
the state ρ ′

i , respectively, the state ρ ′
i evolves into the following state:

ρf = xyIA ⊗ IBρ ′
iI

†
A ⊗ I

†
B + x(1 − y)IA ⊗ CBρ ′

iI
†
A ⊗ C

†
B

+ y(1 − x)CA ⊗ IBρ ′
iC

†
A ⊗ I

†
B + (1 − x)(1 − y)CACBρ ′

iC
†
A ⊗ C

†
B. (20)

If the two players can choose to delay measurements of their payoffs, the game has to
experiences the second evolution in the noise environment. The damping induced by the
environment can result in the loss of quantum coherence of the state given by equation (20).
Under the Kraus operators the state ρf becomes

ρ ′
f =

∑
Mµ(p2)ρf M†

µ(p2), (21)

where Mµ(p2) = mr(p2) ⊗ ms(p2). Equation (21) can finally lead to the payoffs to the two
players through the trace operations given by equation (5). In what follows we shall investigate
the influence of the amplitude-damping and phase-damping environment on the QSD game,
respectively.

3.1. The amplitude damping channel

We consider the situation in which the two decohering processes described in equations (18)
and (21) are the amplitude damping with damping parameters being p1 and p2, respectively.
By substituting the Kruas operators to describe the amplitude damping into equations (18) and
(21), we arrive at the final backward-induction outcome

ρ ′
f = ρ ′

11|11〉〈11| + ρ ′
14|11〉〈22| + ρ ′

22|12〉〈12| + ρ ′
23|12〉〈21|

+ ρ ′
32|21〉〈12| + ρ ′

33|21〉〈21| + ρ ′
41|22〉〈11| + ρ ′

44|22〉〈22|, (22)
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where the matrix elements of the density operator are given by

ρ ′
11 = q12

{
cos2 θ + q1q2 sin2 θ + (q1 + q2)p2 + (1 − q1)(1 − q2)p

2
1(1 − p2)

2 sin2 θ

+ (sin2 θ + q1q2 cos2 θ)p2
2 + p1(1 − p2)

× [q2 + q1(1 − 2q2) + (2 − q1 − q2)p2] sin2 θ
}
,

ρ ′
14 = ρ ′

41 = 1
2q12(1 − p1)(1 − p2)(1 + q1q2) sin(2θ),

ρ ′
22 = q12(1 − p2){(1 + q1p2)q2 cos2 θ + [1 − (1 − q2)p1]

× [q1 + p2 + (1 − q1)(1 − p2)p1] sin2 θ},
ρ ′

23 = ρ ′
32 = 1

2q12(1 − p1)(1 − p2)(q1 + q2) sin(2θ),

ρ ′
33 = q12(1 − p2){(1 + q2p2)q2 cos2 θ + [1 − (1 − q1)p1]

× [q1 + p2 + (1 − q2)(1 − p2)p1] sin2 θ},
ρ ′

44 = (1 − p2)
2[q1q2 cos2 θ + (1 − (1 − q1)p1)(1 − (1 − q2)p1) sin2 θ, (23)

which indicate that the amplitude damping not only affects the non-diagonal elements of the
density operator of the two-qubit system under our consideration but also changes the diagonal
elements of the density operator of the system. In what follows, we will show that it is the
change of the diagonal elements that leads to the amplitude damping drastically changing the
Nash equilibria of the game.

Substituting equation (22) into equation (5), we can obtain payoffs of firms A and B

PA(q1, q2) = q1

q12
(kρ ′

11 − ρ ′
22 − ρ ′

33),

(24)
PB(q1, q2) = q2

q12
(kρ ′

11 − ρ ′
22 − ρ ′

33).

Following the method in the previous section, we can obtain the subgame perfect Nash
equilibrium point for the QSD game with the amplitude damping

q∗
1 = k cos2 θ + A1(p1, p2)

2 + B1(p1, p2)
,

(25)

q∗
2 = k cos2 θ + A2(p1, p2)

[16 − k2(1 − cos 4θ)]/4 + B2(p1, p2)
,

where we have introduced the damping functions

A1(p1, p2) = {−2(p1 + p2 − p1p2) + (2 + k)p2[p2 + (1 − p1)(2p1 + p2 − p1p2)]} sin2 θ,

B1(p1, p2) = −2[(1 + k)p2 + (2 + k)p1(1 − p1)(1 − p2)
2 sin2 θ ],

A2(p1, p2) = A1 + 1
2 (k cos2 θ + A1)B1,

B2(p1, p2) = 2(2 + k)2p3
1(−2 + p1)(1 − p2)

4 sin4 θ + 2p1(1 − p2)
2 sin2 θ

{−8 − 2k + k2

+ 2(2 + 5k + 2k2)p2 + k(k + 4p2 + 2kp2) × cos 2θ + 2(4 + 4k + k2)p2
2 cos2 θ

−p1[−10 − 4k + (8 + 12k + 4k2)p2] + (2 + 2k + k2 − 2(2 + k)p2

+
(
2 + 2k + k2 − 2(2 + k)p2 + (4 + 4k + k2)p2

2

)
cos 2θ

}
+ p2

{−8 − 5k +
(
3 + 5k + 5

2k2)p2 + (2 + k)p2
2 − (

1 + k + 1
4k2)p3

2

+
[
k + (1 − k − 1

2k2)p2 − (2 + k)p2
2 +

(
1 + k + 1

4k2
)
p3

2

]
cos 4θ

}
, (26)
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At above equilibrium point, payoffs of firms A and B are given by

PA(q∗
1 , q∗

2 ) = [k cos2 θ + C1(p1, p2)]2

8 + D1(p1, p2)
,

(27)

PB(q∗
1 , q∗

2 ) = [1 + C2(p1, p2)][k cos2 θ + C3(p1, p2)]2

16 − k2(1 − cos 4θ) + D2(p1, p2)
,

where the damping functions are given by

C1(p1, p2) = C3(p1, p2) = A1(p1, p2),

D1(p1, p2) = 8C2(p1, p2) = 4B1(p1, p2), (28)

D2(p1, p2) = 4B2(p1, p2).

From equations (25) and (27) we can see that the without-damping solutions given by
equations (13) and (14) are recovered easily since we have Ci(0, 0) = Di(0, 0) = 0 when the
damping vanishes, i.e., p1 = p2 = 0.

In order to observe the influence of the amplitude damping, we consider the situation in
which the game experiences only the second decohering process while the first decohering
process vanishes, i.e., p1 = 0 and p2 �= 0. In this case, the related damping functions in
equation (26) are given by

A1(0, p2) = −4p2,

A2(0, p2) = −p2[2 − p2(5 − 3p2) sin2 θ ], (29)

B2(0, p2) = −p2
[(

52 − 42p2 − 3p2
2

) − (
4 − 2p2 − 6p2

2 + 9p3
2

)
cos(4θ)

]/
4,

where we have taken k = 1.
In particular, when θ = 0, namely, the initial entanglement vanishes, we obtain

q∗
1 = 1

2 − 4p2
, q∗

2 = 1 − 2p2

4 − 12p2 + 10p2
2

,

PA(q∗
1 , q∗

2 ) = 1

8 − 16p2
, (30)

PB(q∗
1 , q∗

2 ) = 1 − 2p2

8
(
2 − 6p2 + 5p2

2

) ,

which implies that there exists the subgame perfect Nash equilibrium point for the QSD game
with the amplitude damping in the damping regime of p2 < 1/2 since in this damping regime
q∗

1 > 0, q∗
2 > 0, and PA,B(q∗

1 , q∗
2 ) > 0. In figures 3 and 4, we have plotted the subgame

perfect Nash equilibrium point and corresponding payoffs to the two players with respect to
the damping parameter p2, respectively. From figures 3 and 4, we can see that when the QSD
game is initially in the unentangled state, the amplitude damping can enhance the first-mover
advantage with increasing the damping parameter p2.

However, the situation will be different when the QSD game is initially in an entangled
state. For instance, when the QSD game is initially in the maximally entangled state, i.e.,
θ = π/4, we have

q∗
1 = 1 − p2(2 − 3p2)

4 − 8p2
,

q∗
2 = 1 − [4 − p2(7 − 6p2)]p2

7 − p2{28 − p2[22 + 3p2(4 − 3p2)]} ,

PB(q∗
1 , q∗

2 ) = (1 − 2p2)[1 − p2(2 − 3p2)]2

8{[7 − p2[28 − p2(22 + 3p2(4 − 3p2))]} ,
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Figure 3. The moves of firms A and B at the subgame perfect Nash equilibrium point for the
QSD game with only the second amplitude damping process described by the parameter p2, q

∗
1

(the dash line) and q∗
2 (the solid line), as functions of the damping parameter p2 when the QSD

game is initially in the state given by equation (6) with θ = 0 and k = 1.
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Figure 4. Payoffs to firms A and B at the subgame perfect Nash equilibrium point for the QSD
game with only the second amplitude damping process described by the parameter p2, PA(q∗

1 , q∗
2 )

(the dash line) and PB(q∗
1 , q∗

2 ) (the solid line), as functions of the damping parameter p2 when the
QSD game is initially in the state given by equation (6) with θ = 0 and k = 1.

PA(q∗
1 , q∗

2 ) = [1 − p2(2 − 3p2)]2

32 − 64p2
. (31)

In figures 5 and 6, we have plotted the subgame perfect Nash equilibrium point
and corresponding payoffs to the two players with respect to the damping parameter p2,
respectively. From figures 5 and 6, we can see that there is a ‘critical point’ labelled by C
for q∗

1 and q∗
2 , or PA(q∗

1 , q∗
2 ) and PB(q∗

1 , q∗
2 ). At the ‘critical point’, the two players have the

same payoffs, i.e., q∗
1 = q∗

2 and PA(q∗
1 , q∗

2 ) = PB(q∗
1 , q∗

2 ). This implies that the first-mover
advantage completely disappears due to the influence of the amplitude damping of the noise
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Figure 5. The moves of firms A and B at the subgame perfect Nash equilibrium point for the QSD
game with only the second amplitude damping process described by the parameter p2, q∗

1 (the
dash line) and q∗

2 (the solid line), as functions of the damping parameter p2 when the QSD game
is initially in the state given by equation (6) with θ = π/4 and k = 1.
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Figure 6. Payoffs to firms A and B at the subgame perfect Nash equilibrium point for the QSD
game with only the second amplitude damping process described by the parameter p2, PA(q∗

1 , q∗
2 )

(the dash line) and PB(q∗
1 , q∗

2 ) (the solid line), as functions of the damping parameter p2 when the
QSD game is initially in the state given by equation (6) with θ = π/4 and k = 1.

environment. From equations (25)–(27) we find the ‘critical point’ to be

p2 = 1
3 , q∗

1 = q∗
2 = 1

2 ,
(32)

PA(q∗
1 , q∗

2 ) = PB(q∗
1 , q∗

2 ) = 1
24 .

Figures 5 and 6 indicate that the influence of the damping on the subgame perfect Nash
equilibrium point and corresponding payoffs to the two players is different within different
damping regimes. It is interesting to note that the QSD game can change from the first-mover
advantage game into the follower-mover advantage game when the damping parameter p2

varies from the left-hand-side damping regime of the ‘critical point’ to the right-hand-side
damping regime. On the left-hand side of the ‘critical point’, the first-mover advantage is
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Figure 7. The move of firm A at the subgame perfect Nash equilibrium point for the QSD game
with two amplitude damping processes described by the parameters p1 and p2, q

∗
1 , as the function

of the entanglement angle θ when the QSD game is initially in the state given by equation (6) and
k = 1. The solid, star and dash lines correspond to the cases of p1 = p2 = 0.1, 0.2, and 0.3,
respectively.
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Figure 8. The move of firm B at the subgame perfect Nash equilibrium point for the QSD game
with two amplitude damping processes described by the parameters p1 and p2, q∗

2 , as the function
of the entanglement angle θ when the QSD game is initially in the state given by equation (6) and
k = 1. The solid, star and dash lines correspond to the cases of p1 = p2 = 0.1, 0.2, and 0.3,
respectively.

weakened with the increase of the damping parameter p2 while on the right-hand side of the
‘critical point’ the follower-mover advantage is enhanced with the increase of the damping
parameter p2.

When two decohering processes described in equations (18) and (21) are taken account
into, the situation will become more complicated. In order to see the influence of the two
damping parameters p1 and p2 on the subgame perfect Nash equilibrium point for an arbitrary
value of the entangling parameter θ , using the expressions given by equation (25) we have
plotted q∗

1 and q∗
2 with respect to variation of θ in figures 7 and 8, respectively. Here we have

taken p1 = p2 and k = 1. From figures 7 and 8 we can see that for each pair of damping
parameters (p1, p2), there are two zero-points which can be labelled by θ1 and θ2 with θ1 < θ2,
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Figure 9. Payoff to firm A at the subgame perfect Nash equilibrium point for the QSD game
with two amplitude damping processes described by the parameters p1 and p2, PA(q∗

1 , q∗
2 ), as

the function of the entanglement angle θ when the QSD game is initially in the state given by
equation (6) and k = 1. The solid, star and dash lines correspond to the cases of p1 = p2 = 0.1, 0.2
and 0.3, respectively.
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Figure 10. Payoff to firm B at the subgame perfect Nash equilibrium point for the QSD game
with two amplitude damping processes described by the parameters p1 and p2, PB(q∗

1 , q∗
2 ), as

the function of the entanglement angle θ when the QSD game is initially in the state given by
equation (6) and k = 1. The solid, star and dash lines correspond to the cases of p1 = p2 = 0.1, 0.2
and 0.3, respectively.

respectively. When θ1 < θ < θ2, both q∗
1 and q∗

2 are negative (corresponding curves have been
cut out in the figures ). Therefore, there does not exist the subgame perfect Nash equilibrium
point in this regime since the existence of the equilibrium point requires both q∗

1 and q∗
2 to be

positive. Using the expressions given by equation (27), we have also plotted the corresponding
payoffs to the two players in figures 9 and 10 which indicate that payoffs to both of two players
can be improved with the increase of the damping parameters.

3.2. The phase damping channel

We now turn to the situation of the phase damping channel. In this case, each decohering
period can be described in terms of three Kraus operators given by equation (17). After two
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times of phase decohering, the final state of the QSD game given by equation (21) becomes

ρ ′
f = ρ ′

11|11〉〈11| + ρ ′
14|11〉〈22| + ρ ′

22|12〉〈12| + ρ ′
23|12〉〈21|

+ ρ ′
32|21〉〈12| + ρ ′

33|21〉〈21| + ρ ′
41|22〉〈11| + ρ ′

44|22〉〈22|, (33)

where the matrix elements of the density operator are given by

ρ ′
11 = q12(cos2 θ + q1q2 sin2 θ),

ρ ′
22 = q12(q2 cos2 θ + q1 sin2 θ),

ρ ′
33 = q12(q1 cos2 θ + q2 sin2 θ),

(34)
ρ ′

44 = q12(q1q2 cos2 θ + sin2 θ),

ρ ′
14 = ρ ′

41 = 1
2q12(1 + q1q2)(1 − p1)

2(1 − p2)
2 sin(2θ),

ρ ′
23 = ρ ′

32 = 1
2q12(1 − p1)

2(1 − p2)
2 sin(2θ).

Comparing equations (33) and (34) with equations (8) and (9), we can see that the phase
damping affects only the off-diagonal elements of the output state ρ ′

f while the diagonal
elements of the output state ρ ′

f remain unchanged. It is this point that reveals characteristics
of the phase damping. On the other hand, from definition of the payoffs for firms A and B
given by equations (3) and (4) we can observe the fact that only the diagonal elements of the
output state of the game contribute to their payoffs. Therefore, we can conclude that the phase
damping does not affect the payoffs to the two players.

4. Conclusions

In conclusion, we have studied the influence of entanglement and decoherence on the discrete-
variable QSD game in the Kraus-operator formalism. We have observed novel features in the
QSD game of interest, which are completely due to quantum entanglement and decoherence.
It has been shown that the QDS game can exhibit rich subgame-perfect-equilibria or backward-
induction structures due to the presence of entanglement and decoherence. We have shown that
in different entangling regimes the first-mover advantage can be weakened or enhanced due
to the existence of the initial quantum entanglement for the QSD game without decoherence.
We have calculated the subgame perfect Nash equilibrium of the QSD game in the presence of
both entanglement and decoherence in terms of Kraus-operator representations. The effects of
the amplitude damping and the phase damping on the subgame perfect Nash equilibrium of the
QSD game and the payoffs to the two players at the equilibrium points are explicitly studied. It
has been shown that the amplitude damping seriously affects the backward-induction outcome
of the QSD game while the phase damping does not affect both of the subgame perfect Nash
equilibrium and the profits of the two players. Physically, this is because in the present
formalism of game quantization, the payoff operators of players are actually ‘mixed states’
denoted by ‘density operators’ involving only incoherent superpositions in a two-qubit Hilbert
space. Themselves of these payoff operators do not exhibit any quantum coherence, so their
meanvalues with respect to an arbitrary state in the two-qubit Hilbert space depends on only the
diagonal elements of the density operator of denoting the state. What the amplitude damping
describes is the decay of both diagonal and non-diagonal elements of the density operator of
the system. Hence, the amplitude damping can drastically change the Nash equilibrium and
the payoffs of the two players. However, the situation is different for the phase damping.
what the phase damping describes is just the loss of quantum coherence, i.e., the decay of the
non-diagonal elements of the density operator of the system. Therefore, the phase damping
cannot affect the Nash equilibrium and the payoffs of the two players. This reveals new insight
of quantum coherence in quantum games.
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It is worth mentioning that when the QSD game is initially in the maximally entangled
state, we have found a ‘critical point’ for the moves and payoffs to the two players in the
presence of the amplitude damping. The appearance of the ‘critical point’ is a new phenomenon
induced by the amplitude damping. At the ‘critical point’ the two players have the same
moves and payoffs. The QSD game can change from the first-mover advantage game into
the follower–mover advantage game when the damping parameter varies from the left-hand-
side damping regime of the ‘critical point’ to the right-hand-side damping regime with the
time evolution or the increase of the damping. And on the two sides of the ‘critical point’ the
QSD game with the amplitude damping can exhibit completely different characteristics for
the backward-induction outcome. On the left-hand side of the ‘critical point’ the first-mover
advantage is weakened with the increase of the damping parameter while on the right-hand
side of the ‘critical point’ the follower–mover advantage is enhanced with the increase of the
damping parameter. Finally, we hope that these new features revealed in the present paper
for the QSD game with entanglement and decoherence would be of interest not only to the
quantum information field but also to the applied economics.

Acknowledgments

This work was supported the National Fundamental Research Program of China grant no.
2001CB309310, the National Natural Science Foundation of grant no. 10325523, and the
Education Department of Hunan Province.

References

[1] Baaquie B E 2001 Phys. Rev. E 64 016121
[2] Schaden M 2002 Phys. A 316 511
[3] Waite S 2002 Quantum Investing (London: Texere Publishing)
[4] Piotrowski E W and Sladkowski J 2002 Physica A 312 208
[5] Piotrowski E W and Sladkowski J 2003 Int. J. Quantum Inf. 1 395
[6] Piotrowski E W and Sladkowski J 2003 Preprint quant-ph/0308027
[7] Piotrowski E W and Sladkowski J 2004 Quant. Finance 4 1
[8] Gibbons R 1992 Game Theory for Applied Economists (Princeton: Princeton University Press)
[9] Bierman H S and Fernandez L 1998 Game Theory with Economic Applications 2nd edn (Reading, MA:

Addison-Wesley)
[10] Gravelle H and Rees R 1992 Microeconomics 2nd edn (New York: Longman Harlow)
[11] Rasmusen E 1994 Games and Information: An Introduction to Game Theory 2nd edn (Oxford: Blackwell

Publishers)
[12] Zhang W Y 2004 Game Theory and Information Economics (in Chinese) (Shanghai: Shanghai People Press)
[13] Li H, Du J and Massar S 2002 Phys. Lett. A 306 73
[14] Marinatto L and Weber T 2000 Phys. Lett. A 272 291
[15] Iqbal A and Toor A H 2002 Phys. Rev. A 65 052328
[16] Lo F and Kiang D 2003 Phys. Lett. A 318 333
[17] Lo F and Kiang D 2005 Phys. Lett. A 346 65
[18] Zurek W H 1991 Phys. Today 44 36
[19] Chuang I L, Laflamme R, Shor P W and Zurek W H 1991 Science 270 1633
[20] Sun C P, Zhan H and Liu X F 1998 Phys. Rev. A 58 1810
[21] Sun C P, Gao Y B, Dong H F and Zhao S R 1998 Phys. Rev. E 57 3900
[22] Kuang L M, Tong Z Y, Ouyang Z W and Zeng H S 1999 Phys. Rev. A 61 013608
[23] Kuang L M, Zeng H S and Tong Z Y 1999 Phys. Rev. A 60 3815
[24] Kuang L M, Chen X, Chen G H and Ge M L 1997 Phys. Rev. A 56 3139
[25] Sun Y H, Zhu X and Kuang L M 2005 Chin. Phys. Lett. 22 1833
[26] Tong Z Y and Kuang L M 2006 Chin. Phys. Lett. 23 1076
[27] Zeng A H and Kuang L M 2004 Commun. Theor. Phys. 41 41

http://dx.doi.org/10.1103/PhysRevE.64.016121
http://dx.doi.org/10.1016/S0378-4371(02)01200-1
http://dx.doi.org/10.1016/S0378-4371(02)00842-7
http://dx.doi.org/10.1142/S0219749903000279
http://www.arxiv.org/abs/quant-ph/0308027
http://dx.doi.org/10.1080/14697680400014344
http://dx.doi.org/10.1016/S0375-9601(02)01628-6
http://dx.doi.org/10.1016/S0375-9601(00)00441-2
http://dx.doi.org/10.1103/PhysRevA.65.052328
http://dx.doi.org/10.1016/j.physleta.2003.09.047
http://dx.doi.org/10.1016/j.physleta.2005.07.055
http://dx.doi.org/10.1126/science.270.5242.1633
http://dx.doi.org/10.1103/PhysRevA.58.1810
http://dx.doi.org/10.1103/PhysRevE.57.3900
http://dx.doi.org/10.1103/PhysRevA.61.013608
http://dx.doi.org/10.1103/PhysRevA.60.3815
http://dx.doi.org/10.1103/PhysRevA.56.3139
http://dx.doi.org/10.1088/0256-307X/22/8/003
http://dx.doi.org/10.1088/0256-307X/23/5/004


7744 X Zhu and L-M Kuang

[28] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[29] Chen J L, Kwek L C and Oh C H 2002 Phys. Rev. A 65 052320
[30] Meyer D A 1999 Phys. Rev. Lett. 82 1052
[31] Chen L K, Ang H, Kiang D, Kwek L C and Lo C F 2003 Phys. Lett. A 316 317
[32] Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077
[33] Du J, Li H, Xu X, Zhou X and Han R 2002 Phys. Lett. A 302 229
[34] Zhou L and Kuang L M 2003 Phys. Lett. A 315 426
[35] Lu J, Zhou L and Kuang L M 2004 Phys. Lett. A 330 48
[36] Kraus K 1983 State, Effects and Operations (Berlin: Springer)
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